
1. Introduction
Investigation of climate change impacts at local to regional scales requires spatially resolved climate projections 
to sufficiently capture fine-scale responses and feedbacks (Ashfaq et al., 2016). The average horizontal grid spac-
ing of General Circulation Models (GCMs) in the latest sixth Phase of Coupled Models Intercomparison Project 
(CMIP6) ensemble is still coarser than 1° (∼110 km), which warrants the need for further spatial refinement 
before their use for climate change impact assessments (Maurer & Hidalgo, 2008). This limitation is currently 
overcome by the downscaling of GCMs using process-based dynamical downscaling (also known as regional 
climate modeling), empirical-based statistical downscaling, or a combination of both (Ashfaq et al., 2016; Maurer 
et al., 2013; Wood et al., 2004).

A regional climate model (RCM) is forced with prognostic variables from coarse resolution GCM simulations 
at its lateral boundaries in sub-daily time steps for dynamical downscaling. The design of regional model exper-
iments allows RCMs to independently resolve fine-scale responses, such as those due to complex topography, 
coastal lines, and mesoscale convection within its domain, which are often poorly represented in the numerical 
solution of GCMs. Therefore, while computationally intensive and time-consuming, the dynamical downscaling 
approach enables the investigation of complex processes by providing a suite of physically consistent variables. 
However, due to the influence of numerical model bias, outputs of RCM (e.g., precipitation) should still be 
bias-corrected before their use in downstream modeling approaches, such as high-resolution hydrologic simula-
tions (Potter et al., 2020; Hnilica et al., 2017; Addor & Seibert, 2014; Ashfaq et al., 2010).

On the other hand, statistical downscaling is based on the empirical relationships between the simulated and 
observed climate during the historical period. It is computationally efficient and can downscale large ensembles 
of GCMs representing different future climate scenarios. However, statistical downscaling is limited to only those 
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variables for which long-term observational records are available (Benestad, 2004). Moreover, it also intrinsically 
assumes that the empirical relationships between the simulated and observed climate remain stationary, which 
is likely invalid at higher radiative forcing levels in the future when Earth system dynamics is expected to be 
statistically different from the present day. The statistical downscaling also depends on the choice and length of 
reference data, and both factors may significantly impact the outcome.

While both approaches for the downscaling of GCMs have been in use for decades, their quantitative differ-
ences remain unclear. Most evaluations of downscaled hydroclimate projections are limited to the historical 
period and at a regional scale (Ayar et al., 2016; Bettolli et al., 2021; Manzanas et al., 2018; Nikulin et al., 2018; 
Roux et  al.,  2018; Yoon et  al.,  2012), as limited studies have evaluated similarities and/or disagreements in 
their downscaled climate change and subsequent climate change impacts (Jiang et  al.,  2018; Li et  al.,  2018; 
Mezghani et al., 2019). Since downscaled climate simulations data have been widely used in many hydroclimate 
risk assessments (Batibeniz et al., 2020, Naz et al., 2016, Pagan et al., 2016,Rastogi et al., 2020, 2019), the need 
for a thorough understanding of methodological uncertainties associated with the choices in the downscaling 
approaches cannot be overstated. Likewise, how does the choice of meteorological reference observations – used 
in the bias correction of dynamically downscaled projections or in establishing empirical relationships between 
GCM simulation and observations in statistical downscaling – impact the outcome is a factor which is often 
overlooked or disregarded. Therefore, not only is there a need for a more thorough comparison of different down-
scaling approaches, but there is also a need to understand the uncertainties related to the observational data in the 
downscaling process.

Owing to the need for comparative analyses between dynamical and statistical downscaling approaches and 
between downscaling using multiple observations, this study investigates how the choice of downscaling tech-
niques, and meteorological reference observations, can affect future hydroclimate responses representing average 
and extreme states. We construct these comparisons using data from six CMIP6 GCM simulations that have been 
downscaled using a regional climate model, a statistical technique, and two observations over the conterminous 
United States (CONUS). While these downscaling techniques have been extensively applied and evaluated on 
previous generations of CMIPs (Ashfaq et al., 2016; Mearns et al., 2017; Pierce et al., 2015), the studies using 
the latest CMIP6 are just getting started. To the best of our knowledge, this is perhaps the first CONUS-scale 
intercomparison of multiple CMIP6-based downscaled climate projections in both historical and projected future 
periods that evaluates the differences arising from the choice of downscaling approaches and meteorologic obser-
vations. As previously noted, uncertainties in the regional downscaling of future climate projections can be 
detrimental in the long-term planning to cope with the impacts of climate change. For instance, underestimat-
ing regional-scale climate change responses can result in under-preparedness from a planning and mitigation 
perspective. Contrarily, overestimating these responses may cause overbudgeting to deal with the consequences. 
While we aim to evaluate the key differences arising from the downscaling choices, understanding the factors that 
drive these changes require distinctively different analytical frameworks beyond the scope of the study. Neverthe-
less, we hope that these comparative analyses should inform the effort to develop reliable approaches for future 
impact assessment and mitigation planning.

2. Data and Methodology
2.1. Data

Daily precipitation (P), maximum temperature (Tmax), and minimum temperature (Tmin) are obtained from the 
following two meteorologic reference observations:

1.  Daymet: maintained by the Distributed Active Archive Center at Oak Ridge National Laboratory (ORNL 
DAAC). It provides daily gridded surface weather parameters over North America at a 1-km horizontal grid 
spacing from 1980 to 2019 (Thornton et al., 2021). For this study, we employ the latest Daymet V4, which 
includes observational timing correction for daily precipitation and maximum temperature, along with other 
enhancements.

2.  Livneh: initially produced by the University of Colorado at Boulder (UCB), updated version available from 
the University of California Los Angeles. It provides daily gridded meteorological estimates over CONUS, 
Mexico, and the part of Canada from 1950 to 2018 at a 1/16° (∼6  km) horizontal grid spacing (Livneh 
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et al., 2015). The new update also corrects a timing adjustment issue and improves the characterization of 
precipitation extremes (Pierce et al., 2021).

Given their differences in the original spatial resolution, both datasets were either aggregated or bilinearly inter-
polated to common 1° and 1/24° (∼4 km) grids to support downscaling and evaluation. The 1° resolution grids 
are the common grids used to process all raw CMIP6 GCM outputs. The 1/24° is an intermediate resolution 
between Daymet and Livneh that we selected for evaluation and can also feed into an existing hydrologic model 
(Naz et al., 2016) in the following hydrologic modeling efforts. As reported by Henn et al. (2018), local differ-
ences in different gridded datasets exist, and the differences are not simply due to their different data resolution. 
The impacts of different meteorologic reference datasets on the resulting hydroclimate impact assessment are 
subjects in the subsequent study.

We chose Daymet and Livneh as meteorological reference observations since they have been widely used in many 
hydroclimate studies. While both datasets generally look similar at the regional scale, noticeable local differences 
exist (e.g., see Henn et al., 2018), and the differences are not simply due to their different spatial resolution. These 
local differences may pass onto the downscaled data products and affect the resulting impact assessment (e.g., see 
Alder & Hostetler, 2019). For instance, Livneh exhibits cold bias in Tmin over the western United States. These 
biases in Tmin are associated with the method and interpolation technique used when developing the gridded data 
set (Walton & Hall, 2018). When using Livneh as the meteorological reference observation, the downscaled data 
product will possess similar features that need to be better acknowledged.

We select 6 CMIP6 GCMs (Table  1) based on the availability of 6-hourly atmospheric data for dynamical 
downscaling and their historical performance over the CONUS which are detailed in Ashfaq et al., 2022. The 
data for selected GCMs is obtained from Earth System Grid Federation (ESGF) archives (https://esgf-node.
llnl.gov/search/cmip6) for 1980–2014 in the historical period and 2015–2059 in the future period under the 
SSP585 scenario. Before statistical downscaling, all CMIP6 GCMs were also remapped to the common 1° × 1° 
latitude-longitude grids.

2.2. Methods

2.2.1. Dynamically Downscaling and Correction

We use the Regional Climate Model version 4 (RegCM4), developed and maintained by the Abdus Salam 
International Center for Theoretical Physics (Giorgi et al., 2012), to dynamically downscale the CMIP6 GCMs 
(outputs referred to as RCMO). The RegCM4 is configured at 25 km horizontal grid spacing and 18 vertical 
levels over a domain that covers CONUS, parts of Mexico and Canada (Figure S1 in Supporting Information S1). 
It uses the hydrostatic dynamical core from the Fifth Generation Mesoscale Model (MM5) (Grell et al., 1994), 
the radiation package from the Community Climate Model version 3 (CCM3) (Kiehl et al., 1998), the Commu-
nity Land Model (CLM) version 4.5 (Tawfik & Steiner, 2011), the Holtslag boundary layer package (Holtslag 
et al., 1990), the Subgrid Explicit Moisture Scheme (SUBEX) scheme of Pal et al. (2000) and the Tiedke cumu-
lus convection parameterization (Tiedtke, 1989). RegCM4 and its earlier versions have been extensively used to 
downscale CMIP5 and earlier generations of GCMs over North America [Ashfaq et al., 2010, 2013 and 2016; 

CMIP6 GCM name
Spatial 

resolution
Ensemble 
member GCM institute References

ACCESS-CM2 144 × 192 r1i1p1f1 The commonwealth Scientific and Industrial Research Organization, Australia Dix et al. (2019)

BCC-CSM2-MR 160 × 320 r1i1p1f1 Beijing Climate Center Wu et al. (2018)

CNRM-ESM2-1 256 × 128 r1i1p1f2 French Center National de la Recherche Scientifique Seferian (2018)

MRI-ESM2-0 160 × 320 r1i1p1f1 Meteorological Research Institute Japan Yukimoto et al. (2019)

MPI-ESM1-2-HR 192 × 384 r1i1p1f1 The German Climate Computing Center von Storch et al. (2017)

NorESM2-MM 192 × 288 r1i1p1f1 Multi-institutional, coordinated climate research project in Norway Bentsen et al. (2019)

Note. CMIP, Coupled Models Intercomparison Project; GCM, General Circulation Model.

Table 1 
List of CMIP6 GCMs Used for Downscaling

https://esgf-node.llnl.gov/search/cmip6
https://esgf-node.llnl.gov/search/cmip6
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Diffenbaugh & Ashfaq,  2010]. In the current configuration, the RegCM4 grid was centered at 39.00°N and 
98.00°W. It consisted of 157 points in the latitude direction and 227 points in the longitude direction, covering 
CONUS, parts of Mexico and Canada. Further, daily scale bias-correction (method described in the following 
section) was applied to P, Tmax and Tmin from each of the RegCM simulations using both Daymet (outputs referred 
to as RCMCD) and Livneh (outputs referred to as RCMCL) at 1/24° (∼4 km) spatial grid.

2.2.2. Statistical Downscaling

For statistical downscaling, we apply the Double Bias Correction Constructed Analogs (DBCCA) method (Werner 
& Cannon, 2016) to daily scale P, Tmax and Tmin from the six selected CMIP6 GCMs using both Daymet (outputs 
referred to as DBCCAD) and Livneh (outputs referred to as DBCCAL) as the training datasets. DBCCA is based 
on the widely used Bias Correction Constructed Analogs (BCCA) method developed by Maurer et al. (2010), 
with another round of bias correction at the end to fix some known BCCA issues such as drizzling and resid-
ual biases. Werner and Cannon (2016) conducted a comprehensive evaluation of several statistical downscaling 
methods and reported DBCCA as one of the two best-performing methods in their case study. DBCCA includes 
four main steps, in which steps 1 and 2 are conducted at the 1° horizontal grid spacing, and steps 3 and 4 are 
performed at the 1/24° horizontal grid spacing.

1.  First Bias Correction (at 1° grid resolution): The observations are aggregated to match the 1° latitude-longitude 
GCM grid. For each calendar day and each GCM grid, a 31-day (±15 days) window is used to create the 
cumulative distributions across all years from observations, GCM baseline, and GCM future. Bias correc-
tion is then applied to the daily GCM output using a quantile mapping approach (Thrasher et al., 2012). A 
maximum of 150% future to baseline quantile ratio is enforced for precipitation to avoid unreasonably large 
adjustments (Gutman et al., 2014).

2.  Analogue Selection and Weight Determination (at 1° grid resolution): For each GCM day, a 91-day (±45 days) 
window is used to create a historic library across all years in observation. A total of 30 analogs from the 
historic library that best match the spatial pattern of the targeted GCM day are selected. The statistical regres-
sion technique is then used to determine the weights of each analogue (Maurer et al., 2010).

3.  Construct Analogue (at 1/24° grid resolution): Assuming the same analogs and weights exist at both spatial 
resolutions, the previous step is reversed. The 30 analogs from observation at the 1/24° grid are first looked 
up. A linear combination of these 30 analogs with the identified weights is formed as the downscaled climate 
variable. Output at this step is the conventional BCCA.

4.  Second Bias Correction (at 1/24° grid resolution): A second daily bias correction is applied to the 1/24° 
constructed analogs to generate the final results of DBCCA. In addition, to maintain a reasonable diurnal 
temperature range (DTR; Thrasher et al., 2012), we apply the second bias correction on Tmax and DTR. Tmin is 
then calculated based on the corrected Tmax and DTR (Tmin = Tmax − DTR). This is also the same step we used 
to bias-correct the RegCM outputs.

2.2.3. Analysis

We evaluate the performance of the six datasets: the original GCMs (GCMO), RCMO, RCMCD, RCMCL, DBCCAD, 
and DBCCAL in the historical period by using annual and seasonal averages of P, Tmax, and Tmin, annual 95th 
percentile of P (P95) and Tmax (T95), fifth percentile of Tmin (T05), the annual number of rainy days with P > 1 mm 
(Rday), and frost days with Tmin < 0 (Fday). These metrics are also used to investigate differences in the projected 
future period changes across the six datasets. We also compare future period changes in the number of days 
with P above historical P95, Tmax above historical T95, and Tmin below historical T05 in these ensembles. Further, 
we compare the output from the downscaled dataset with the GCMO. We spatially interpolate GCMO and the 
corresponding RCMO outputs to the common 1/24° (∼4 km) spatial grid spacing for ease of comparison. The 
historical comparisons are based on several statistical measures, including the Pearson product-moment coeffi-
cient of linear correlation (also known as pattern correlation (PC)), the ratio of spatial standard deviation (ROS), 
and absolute bias in the annual and seasonal magnitudes of each metric.

Further, we present the historical comparison and future changes using spatial maps, heat maps, time series plots, 
and plots of probability density function (PDF). The analysis is presented for 1980–2019 reference and 2020–2059 
projection periods. The reference period represents the most recent historical period, while the projection period 
represents the near-term future for which the downscaling has been conducted. Further, we chose the highest 
emission to evaluate hydroclimate changes under the potential worst-case scenario. The projected future changes 
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are presented as the average differences between 2020–2059 and 1980–2019. Statistical significance of future 
change is tested using Student's t-test at a 95% confidence interval. For the PDF plots, the difference for each year 
in the future period is calculated with respect to the average historical climatology for each grid point, and the 
plots are then created using all the grid points over CONUS. For P, Tmin and Tmax, monthly data is used, whereas 
for P95, T95, T05, number of days above P95 and T95, number of days below T05, annual data is used to create the 
PDFs. Time series plots are plotted as anomalies with respect to 1981–2018. We use nine National Center for 
Environmental Information (NCEI) regions to perform regional-scale analysis following Ashfaq et  al.  (2016) 
that also use the NCEI climate regions to evaluate projected changes at a regional scale. The climate within 
each NCEI region exhibit relatively consistent characteristics, which enables us to compare these datasets at the 
sub-CONUS scale but over areas with uniform characteristics.

3. Results
3.1. Performance Evaluation of Historical Climate Ensembles

We assess the performance of historical ensembles by evaluating biases, pattern of correlation (PC) and ratio of 
standard deviation (ROS) of various metrics with respect to reference observations (Figures 1–3, Tables S1–S6 in 
Supporting Information S1). The following section provides details on these statistical measures.

Figure 1. Heat maps showing CONUS scale biases in annual and seasonal scale daily maximum temperature (Tmax), daily minimum temperature (Tmin), and 
Precipitation (P) and annual magnitude of 95th percentile of Tmax (T95), fifth percentile of Tmin (T05), 95th percentile of P (P95), number of wet days (Rdays) and number 
of frost days (Fdays) in the original GCMs (GCMo), dynamically downscaled with RegCM4 (RCMo), dynamically downscaled and corrected with Daymet (RCMCD) 
and Livneh (RCMCL) and statistically trained and corrected simulations with Daymet (DBCCAD) and Livneh (DBCCAL) as compared to (a) Daymet and (b) Livneh 
observations respectively. The simulations trained and/or corrected with an observation are compared with the reference observation. The biases in Tmax, Tmin, 
Precipitation, T95, T05, and P95 are presented in  oC,  oC, mm/day,  oC,  oC, and mm/day respectively whereas those in the number of wet days and number of frost days are 
normalized using the mean ensemble bias for presentation and comparison.
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Figure 2. Same as Figure 1 but for pattern correlation.

Figure 3. Same as Figure 1 but for ratio of standard deviation.
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3.2. Biases

In terms of biases (Figure 1), our findings include:

1.  The dynamically downscaled and corrected (RCMCD, RCMCL) and statistically downscaled (DBCCAD, 
DBCCAL) ensembles exhibit negligible biases at the CONUS scale in most cases. For example, the bias in P 
(±0.04 mm/day), Tmin (−0.13–0.1  oC), Tmax (−0.15–0.1  oC), T95 (−0.25–0.02  oC), P95(<0.4 mm/day) and Rday 
(<1 day) are small, where the values in parenthesis shows the range of CONUS-scale biases across ensemble 
members and the sign reflects the direction of the bias. The only exception where RCMCD and RCMCL exhibit 
higher biases than DBCCAL and DBCCAD is for T05 (up to −1.8  oC) and Fday (up to 8 days) (Tables S1 and S2 
in Supporting Information S1).

2.  In contrast, GCMO and RCMO ensembles, which represent uncorrected raw versions of the aforementioned 
datasets, exhibit relatively significant differences from their corrected counterparts across all evaluation 
metrics (Figure 1). For instance, most of the ensemble members display cold bias in Tmax over the higher 
elevations and parts of the upper Midwest, Southwest, South, and Southeast, which results in a CONUS-scale 
bias of up to −4°C and −7.4°C in GCMO and RCMO ensemble, respectively (Figure 1; Figure S2, Tables S1 
and S2 in Supporting Information S1).

3.  The cold biases in Tmax that also persist in T95 are partly a result of errors in the distribution of P in the GCMO 
ensemble that are further exacerbated in the RCMO ensemble after downscaling (Figure 1; Figure S3, S4 and 
Tables S1, S2 in Supporting Information S1).

4.  The majority of GCMO ensemble members exhibit strong wet precipitation bias except during summer and 
fall, when the nature of bias varies across models (Figure 1). The exacerbation of wet bias after dynamical 
downscaling is particularly noticeable over Northeast, parts of Southeast, and West (Figure S4 and S5 in 
Supporting Information S1). Interestingly, both GCMO and RCMO ensembles exhibit lower than observed 
magnitudes of P95, which implies that the wet bias results from too many precipitation days (Rday) that lower 
the magnitudes of extremes by distributing annual precipitation over an excessive number of days. Nonethe-
less, the RCMO ensemble reduces the underestimation bias in P95 over several hot spots of extreme precipita-
tion, such as Southeast and West (Figure S6 in Supporting Information S1).

5.  The RCMO also displays improvements in the simulation of Tmin, T05, and Fdays (Figure 1; Figure S7–S9 in 
Supporting Information S1). For instance, the GCMO ensemble exhibits substantial warm bias (up to 5°C) 
in Tmin over parts of Southwest, South and Southeast US, Upper Midwest, and Northern Rockies (Figure 
S7 in Supporting Information S1). This warm bias in Tmin is reduced in the RCMO ensemble, as it ranges 
between −1.75 to 2.6  oC (−3.7–3  oC) with respect to Daymet (Livneh). Most GCMO also exhibit warm bias 
in simulating T05, which improves after downscaling (Figure 1; Figure S8, Tables S1 and S2 in Supporting 
Information S1).

6.  Overall, both ensembles (GCMO and RCMO) display higher biases in the simulated characteristics of Tmax 
and P. Nonetheless, the RCMO ensemble shows better skill in the simulation of Tmin, Fdays, T05, and P95 as 
compared to the GCMO ensemble over a majority of CONUS.

3.3. Pattern Correlation and Ratio of Standard Deviation

In terms of PC (Figure 2) and ROS (Figure 3), our findings include:

1.  The dynamically downscaled and corrected (RCMCD, RCMCL) and statistically downscaled (DBCCAD, 
DBCCAL) ensembles have pattern correlation (PC) above 0.99 and a ratio of standard deviation (ROS) close 
to 1 for most of the indices (Tables S3-S6 in Supporting Information S1).

2.  In the GCMO and RCMO ensembles, the PC for most of the metrics for Tmax and Tmin is above 0.9 except for 
the summer Tmax (0.75–0.92) and T95 (0.67–0.9) for both ensembles (Figure 2, Tables S3 and S4 in Supporting 
Information S1). In contrast, the ROS value depends on the reference observation datasets. It is close to 1 for 
a majority of Tmax and Tmin metrics with respect to Daymet, while it is <0.9 with respect to Livneh for several 
Tmin metrics (12/30) in the case of GCMO ensembles and a few Tmin metrics (6/30) in the case of RCMO ensem-
bles (Tables S5 and S6 in Supporting Information S1). This discrepancy is associated with the Tmin biases in 
Livneh over the West-Southwest US (Walton & Hall, 2018).

3.  For annual and seasonal P, P95 and Rdays, PC ranges between 0.6 and 0.87 for both ensembles (Tables S3 and 
S4 in Supporting Information S1). The ROS value for P ranges between 0.6 and 1.4, with values < 1 for most 
metrics/models in the GCMO ensemble and close to or greater than 1 for the downscaled RCMO ensemble 
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(Figure 3). For P95, the ROS value is >=0.9 for 5/6 RCMO simulations as compared to <=0.75 for 6/6 GCMO. 
The ROS value for wet days is between 0.9 and 1.18 for RCMO and 0.82 and 1.22 for GCMO ensemble 
members (Figure 3, Tables S5 and S6 in Supporting Information S1).

3.4. Projected Changes in Future Climate

For all six ensembles (GCMO, RCMO, RCMCL, RCMCD, DBCCAL, DBCCAD), we show the spatial comparison 
of changes in the characteristics of precipitation and temperature distributions, in addition to their summary 
statistics at a regional scale for nine NCEI regions (Figures 4–6; Figures S10–S13 and Tables S7–S17 in Support-
ing Information S1). The changes are based on the difference between the future period (2020–2059) from the 
reference period (1980–2019).

3.4.1. Changes in the Characteristics of Tmax

All six ensembles representing future climate change projections show a statistically significant increase in the 
magnitudes of Tmax and T95 over NCEI regions, with the strongest changes in the Upper Midwest and Northern 
Rockies regions (Figures 4 and 5; FIgures S10, S16 and Tables S7, S8 in Supporting Information S1). Compared 
to the GCMO ensemble, the corresponding statistically downscaled ensembles (DBCCAL and DBCCAD) project 
generally similar changes, while the dynamically downscaled RCMO and its corresponding bias-corrected ensem-
bles (RCMCL and RCMCD) project comparatively smaller future period changes in Tmax. The smallest (0.05°C) 
and most significant (up to 0.27°C) differences in projected changes in Tmax between GCMO and RCMO, RCMCL 
and RCMCD are over the West and the Northeast, respectively (Figure 4a). Similarly, the future period changes 
in T95, projected by DBCCAL and DBCCAD, are comparable whereas those projected by RCMO, RCMCL, and 
RCMCD are lower (by 0.27−0.7°C) than the GCMO ensemble (Figure 4b). The six ensembles show marked differ-
ences in the future period changes in the frequency of Tmax extremes (number of days above the historical T95). 
As compared to GCMO, RCMCL and RCMCD project a similar increase, RCMO projects a lower increase (by up 
to 8 days), whereas DBCCAL and DBCCAD project a much higher increase (by up to 11 days) in the frequency 
of Tmax extremes across most regions (Figures 4d and 5a–5f; Table S9 in Supporting Information S1). The differ-
ences in the frequencies of the Tmax extremes, projected by DBCCAL and DBCCAD, are higher during the last two 
decades of analyses (2040–2059) across CONUS (Figure S14g–S14o in Supporting Information S1).

3.4.2. Changes in the Characteristics of Tmin

All the six ensembles project statistically significant increase in Tmin and T05 and decrease in extremely cold 
days (number of days below historical period T05) and number of frost days over all the regions (Figures 4e–4h; 
Figure S11, S12 and Tables S10–S13 in Supporting Information S1). When compared to the GCMO, contrary to 
the future changes in Tmax, the dynamically downscaled RCMO and its corresponding bias-corrected ensembles 
(RCMCL and RCMCD) project higher future period warming in Tmin over a majority of the regions with the largest 
differences (up to 0.23°C) in the West (Figure 4f; Table S10 in Supporting Information S1). These ensembles 
also projected higher increases in T05 than the GCMO, with the largest differences in warming over the West 
and Southwest (Figure 4e, Table S11 in Supporting Information S1). On the other hand, similar to the future 
changes in Tmax, DBCCAL and DBCCAD exhibit future changes in Tmin comparable to GCMO over most regions 
except West and Northwest, where differences between GCMO and the corresponding statistically downscaled 
ensembles are higher (by 0.1–0.23°C) (Figure 4f, Table S10 in Supporting Information S1). The magnitude of 
future period changes in T05 is lower in DBCCAL and DBCCAD when compared with the GCMO except over 
Northern Rockies and Upper Midwest (Figure 4e, Table S11 in Supporting Information S1). Further, there are 
also differences between DBCCAL and DBCCAD in the projected warming in Tmin and T05 over most regions. 
Lastly, the projected changes in the number of days below historical T05 are generally comparable across all the 
ensembles (Figure S12, Table S12 in Supporting Information S1). However, the projected decrease is higher in 
the number of frost days in RCM and its bias-corrected ensembles (RCMO, RCMCL, and RCMCD) (by 1–5 days) 
than in statistically downscaled ensembles (DBCCAL and DBCCAD) (by up to 3 days) in comparison to the 
GCMO (Figure 4h).

3.4.3. Changes in the Characteristics of P

All the ensembles project a significant increase in P, P95, and extreme P (days > historical P95) over the majority of 
CONUS, except over parts of South and Southwest in the GCMO and the RCMO ensembles (Figures 4i–4l and 6; 
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Figures S13, S15, Tables S14–S16 in Supporting Information S1). The future period increase is higher over the 
Southeast, the Northeast, and parts of the Western US. On the other hand, the projected changes in Rdays are small 
and insignificant, implying that the future period increase in P results from an increase in precipitation intensity 
and P95 (Figures 4i–4l, Table S17 in Supporting Information S1). The GCMO ensemble exhibits the smallest rise 
in P95 compared to the rest of the five ensembles (Figures 4j and 6). Furthermore, both the choice of downscaling 
techniques and the observations used for training and correction impact the projected future period changes in 
the magnitude of P95. For instance, over the Southeast and the Northeast, RCMCL and RCMCD project a higher 
increase in P95 and the number of days above historical P95 compared to DBCCAL and DBCCAD. Similarly, 

Figure 4. Heat maps showing projected future changes (2020–2059 minus 1980 to 2019) as simulated by GCMO, RCMO, RCMCL, RCMCD, DBCCAL, and DBCCAD 
in (a) Tmax (b) T95 (d) number of days with Tmax above historical T95 (e) T05 (f) Tmin (g) number of days with Tmin below historical T05 (h) Fdays (i) P (j) P95 (k) number 
of days with P above historical P95 (l) Rdays across the nine National Center for Environmental Information (NCEI) climate regions shown in (c). The changes are 
significant for all the boxes at a 95% confidence interval except for those marked with *.
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RCMCD and DBCCAD project a higher increase in both metrics than RCMCL and DBCCAL over the Southeast, 
Northeast, and West (Figure 6).

4. Summary and Discussion
We present a comprehensive comparison of an ensemble of dynamical and statistical downscaled CMIP6 GCMs 
in the historical and future periods to investigate how the choice of downscaling techniques and meteorological 
reference observations affect future hydroclimate projections. To the best of our knowledge, this is the first 
time that the CMIP6 GCMs have been used for downscaling over the CONUS with two very different down-
scaling methods. For dynamical downscaling, we employ the RegCM4 model, and the downscaled outputs are 
subsequently bias-corrected. For statistical downscaling, we apply the DBCCA technique to selected variables. 

Figure 5. Spatial maps of projected changes (2020–2059 minus 1980 to 2019) in number of days above historical T95 in (a) 
GCMO, (b) DBCCAL, (c) DBCCAD, (d) RCMO (e) RCMCL and (f) RCMCD. Changes are significant across the map at a 95% 
confidence interval.

Figure 6. Spatial maps of projected changes (2020–2059 minus 1980 to 2019) in the magnitude of P95 in (a) GCMO, (b) 
DBCCAL, (c) DBCCAD, (d) RCMO (e) RCMCL and (f) RCMCD. Stippled area shows significant change at 95% confidence 
interval.
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Additionally, we use two high-resolution observations in the training and/or bias correction process to account for 
the uncertainties resulting from the choice of reference observations. Our main findings include:

4.1. Choice of Meteorological Reference Observation Used in the Bias-Correction of Downscaled 
Historical Climate Output Can Result in Marked Differences in the Outcome

Dynamical downscaling is unable to perform better than the driving GCMs consistently. As a result, the dynam-
ically downscaled RCM (RCMO) exhibits improvements over the driving GCMs (GCMO) in several evalua-
tion metrics but exacerbates biases in a few evaluation metrics. For instance, the RCMO simulations exhibit 
cold biases than GCMO in Tmax. The attribution of such exacerbation is beyond the scope of current analyses 
because identifying physical processes that drive biases in RCMO requires a distinctively different analytical 
framework beyond the scope of this study. Nonetheless, our analyses identify potential linkages between Tmax 
errors are excessive P and high Rdays in RCMO, which provide the basis for more targeted rigorous investigations 
in future studies. Despite the biases in P, RCMO simulations exhibit improvements in the distribution of precipi-
tation extremes. The bias-corrected RCMO simulations (RCMCL and RCMCD) and/or the statistical downscaling 
of GCMO (DBCCAL and DBCCAD) mostly remove their simulated errors in the historical climates, and these 
improvements are mostly insensitive to the choice of the downscaling technique.

The choice of reference observations yields some marked differences in the bias-corrected data. We evaluate 
these differences using the PDF plots (Figures 7a–7c; Figure S16a-S16c in Supporting Information S1), plots 
for cumulative density function (CDF) (Figure S16d–S16f in Supporting Information  S1) and survival func-
tion (SF) (Figure S16g–S16i in Supporting Information S1) for the historical period. For instance, we find that 
precipitation extremes are underestimated in Livneh compared to Daymet, which is evident from the differences 

Figure 7. Probability density plots for historical period/future change in (a/d) precipitation (b/e) daily maximum temperature and (c/f) daily minimum temperature. 
The plots are created using monthly average values and all the grid points over the CONUS domain. The difference for each year in the future period is calculated with 
respect to the average historical climatology for each grid point.
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in the right tails of precipitation PDF plots as well as from the CDF and SF plots (Figure S16a, S16d and S16 g 
in Supporting Information S1). Similarly, the differences in Tmin are evident from the disparities in left tails as 
well as the mode of the Tmin PDF plots as well as from the CDF and SF plots that show a larger number of nega-
tive Tmin values for Livneh than Daymet (Figure 7c, Figure S16c, S16f and S16i in Supporting Information S1). 
These differences in Tmin between observations are also visible in the spatial maps, especially over the western 
half of the US (Figure S7 in Supporting Information S1). Studies demonstrate that choice of interpolation tech-
nique in the development of the gridded datasets can partly be responsible for such disagreements (Walton & 
Hall, 2018). The downstream impact of these differences in observations is also visible between the distributions 
of Livneh (RCMCL and DBCCAL) versus Daymet (DBCCAL and DBCCAD) downscaled and/or corrected ensem-
bles (Figures 7a–7c; Figure S16 in Supporting Information S1).

4.2. The Differences in Future Hydroclimate Projections Arising From the Choice of Downscaling 
Techniques Are More Prominent Than Those From the Reference Observations

This study has not addressed how historical period biases influence simulated future responses, as it requires 
more in-depth targeted and beyond the scope analyses. Nevertheless, we highlight the key differences in future 
hydroclimate projections that arise from the choice of downscaling technique and reference observation using 
PDF plots of changes in various metrics (Figures 7 and 8). The projected differences in the mean P, Tmax and 
Tmin are generally more uniform across the simulations (Figures 7d–7f). However, there are more considerable 

Figure 8. Probability density plots for future changes in (a) 95th percentile of Tmax (T95) (b) the number of days above 
historical T95 (c) fifth percentile of Tmin (T05) (d) number of days below historical T05 (e) 95th percentile of daily precipitation 
(P95) (f) number of days above historical P95. For each grid point of the CONUS domain, the differences are calculated 
for the annual average values for each year in the future period (2020–2059) with respect to the average historical 40-year 
climatology (1980–2019).
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differences in the simulation of extremes. For instance, RCM and its bias-corrected ensembles (RCMO, RCMCL, 
and RCMCD) project comparatively lower warming in the magnitudes of T95 (Figure 8a). Similarly, statistically 
downscaled ensembles (DBCCAL and DBCCAD) project significantly higher increases in the frequency of T95 
extremes. These differences are evident from the elongated right tails and the differences in the peak of the PDF 
plots (Figures 8a and 8b). It is interesting to note that dynamically downscaled RCM (RCMO) underestimates the 
frequency of T95 extremes, whereas its corresponding bias-corrected ensembles (RCMCL and RCMCD) project 
similar future changes when compared to those projected by driving GCMs (GCMO) (Figure 8b). RCM and its 
bias-corrected ensembles (RCMO, RCMCL, and RCMCD) overestimate, whereas statistically downscaled ensem-
bles (DBCCAL and DBCCAD) project similar change in the magnitude of T05 as the driving GCMs (GCMO) 
(Figure  8c). RCMCL and RCMCD also simulate a more substantial decrease in T05 extremes, while RCMO, 
DBCCAL, and DBCCAD generally show comparable changes as GCMO (Figure 8d). These differences are visi-
ble from the right and left shifts in the distributions of RCM, and its bias-corrected ensembles with respect to 
the driving GCMs and the corresponding statistically downscaled ensembles in Figures 8c and 8d, respectively. 
The distributions of the magnitude of change in P95 and the frequency of P95 extremes simulated by RCMCL 
and RCMCD show a slight shift to the right as compared to those by DBCCAL and DBCCAD, reflecting more 
remarkable changes in the former (Figures 8e and 8f). These differences are also evident in the spatial plots that 
show a higher increase in the magnitude of P95 in RCMCL and RCMCD than in DBCCAL and DBCCAD, especially 
over the southeastern US (Figure 6). The differences arising from the choice of observations, though less prom-
inent, are evident in the simulations of the precipitation extremes. Daymet downscaled and/or corrected ensem-
bles (DBCCAD and RCMCD) project a higher number of P95 extremes as compared to Livneh-based ensembles 
(DBCCAL and RCMCL) (Figures 6 and 8f).

The underlying causes of the disparities in future changes due to the choice of downscaling technique are diffi-
cult to systematically ascertain due to the inherently different nature of the two downscaling techniques. The 
projected changes in dynamical downscaling are governed by simulated physical responses, parameterizations' 
choice, and RCM's internal dynamics. On the other hand, the different response in the DBCCA technique could 
arise at different steps of the statistical downscaling procedure. Nevertheless, these analyses elucidate the key 
factors inducing uncertainties in the spatial downscaling, such as the downscaling techniques and the choice of 
observations used for training and/or correction of simulated data.

4.3. A More Comprehensive Framework Is Needed to Capture the Full Range of Methodological 
Uncertainties in Climate Downscaling

Different methodological choices in the downscaling techniques inevitably add a layer of uncertainty and 
complexity to the spatial refinement of projected future climate change, which is increasingly necessary to under-
stand regional and local-scale climate change impacts. These include but are not limited to the choice of (a) driv-
ing GCM, (b) RCM used for dynamical downscaling, (c) statistical downscaling techniques, and (d) observations 
used for statistical training and/or correction. While the analyses described in this study provide helpful infor-
mation regarding some of the sources of method-based uncertainties, the study is still limited in some aspects. 
The use of a single RCM, one statistical downscaling technique, two observational datasets, and a limited set of 
GCMs in the current study does not capture the full range of uncertainties associated with the methodological 
choices in the downscaling of GCMs. Therefore, further studies using multiple RCM simulations and statis-
tical techniques, a larger suite of driving GCMs, and observational datasets are warranted to establish a more 
comprehensive and robust understanding of method-based uncertainties in this regard. In the future, we plan to 
extend current work by incorporating other statistical downscaling techniques and RCMs and by utilizing a more 
extensive set of driving GCMs. The output from the existing suite of downscaled data is currently used to run 
multiple hydrologic models, which should help to elucidate further the issues related to hierarchical uncertainty 
in downscaling procedures.

The high-resolution downscaled climate output analyzed in this study are being used in various regional scale 
hydro-climate risk assessment exercises including but not limited to evaluations of climate change impacts on 
hydrology, reservoir operations, hydropower generation, future energy demand and climate extreme events. The 
multi-model framework provides a new dimension for the impact assessment community to explore the additional 
uncertainties along the chain of hydroclimate modeling and analysis.
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Data Availability Statement
All the CMIP6 GCMs data are publicly available (from https://esgf-node.llnl.gov/projects/cmip6/). The 
source code for RegCM4 is available online (from https://github.com/ICTP/RegCM). A non-github version 
cannot be provided since the code is maintained by a separate organization (International Centre for Theo-
retical Physics, Trieste, Italy). The analysis code used in this study is available in a repository at https://doi.
org/10.5281/zenodo.6784778. The Daymet observations data (Thornton et al., 2021) are publicly available (from 
https://daac.ornl.gov/DAYMET/) and Livneh observations (Livneh et  al.,  2015) are publicly available (from 
https://psl.noaa.gov/data/gridded/data.livneh.html).
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